Vertical full-colour micro-LEDs via 2D materials-based layer transfer

  • Lee, VW, Twu, N. & Kymissis, I. Micro-LED technologies and applications. Inf. Disp. 3216–23 (2016).

    Google Scholar

  • Zhan, T., Yin, K., Xiong, J., He, Z. & Wu, S.-T. Augmented reality and virtual reality displays: perspectives and challenges. iScience 23101397 (2020).

    Article Google Scholar

  • Gong, Z. Layer-scale and chip-scale transfer techniques for functional devices and systems: a review. Nanomaterials (Basel) 11842 (2021).

    Article CAS Google Scholar

  • Wu, Y., Ma, J., Su, P., Zhang, L. & Xia, B. Full-color realization of micro-LED displays. Nanomaterials (Basel) 102482 (2020).

    Article CAS Google Scholar

  • Marinov, VR 52-4: Laser-enabled extremely-high rate technology for µLED assembly. SID Symp. Dig. Tech. Pope 49692–695 (2018).

    Article Google Scholar

  • Bower, CA et al. Emissive displays with transfer-printed assemblies of 8 µm x 15 µm inorganic light-emitting diodes. Photon. Res. 5A23–A29 (2017).

    Article CAS Google Scholar

  • Chun, J. et al. Vertically stacked color tunable light-emitting diodes fabricated using wafer bonding and transfer printing. ACS Appl. Mater. Interfaces 619482–19487 (2014).

    Article CAS Google Scholar

  • Kang, C.-M. et al. Monolithic integration of AlGaInP-based red and InGaN-based green LEDs via adhesive bonding for multicolor emission. Sci. Rep. 710333 (2017).

    Article Google Scholar

  • Kang, C.-M. et al. Hybrid full-color inorganic light-emitting diodes integrated on a single wafer using selective area growth and adhesive bonding. ACS Photonics 54413–4422 (2018).

    Article CAS Google Scholar

  • Jin, H. et al. Vertically stacked RGB LEDs with optimized distributed Bragg reflectors. Opt. Lett. 456671–6674 (2020).

    Article CAS Google Scholar

  • Li, L. et al. Transfer-printed, tandem microscale light-emitting diodes for full-color displays. Proc. Natl Acad. Sci. USA 118and2023436118 (2021).

    Article CAS Google Scholar

  • Mun, S.-H. et al. Highly efficient full-color inorganic LEDs on a single wafer by using multiple adhesive bonding. Adv. Mater. Interfaces 82100300 (2021).

    Article CAS Google Scholar

  • El-Ghoroury, HS, Chuang, C.-L. & Alpaslan, ZY 26.1: Invited paper: quantum photonic imager (QPI): a novel display technology that enables more than 3D applications. SID Symp. Dig. Tech. Pope 46371–374 (2015).

    Article Google Scholar

  • Yadavalli, K., Chuang, C.-L. & El-Ghoroury, H. Monolithic and heterogeneous integration of RGB micro-LED arrays with pixel-level optics array and CMOS image processor to enable small form-factor display applications. in Proc. SPIE 11310, Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR) (eds Kress, BC & Peroz, C.) 113100Z (SPIE, 2020).

  • Ayari, T. et al. Wafer-scale controlled exfoliation of metal organic vapor phase epitaxy grown InGaN/GaN multi quantum well structures using low-tack two-dimensional layered h-BN. app. Phys. Lett. 108171106 (2016).

    Article Google Scholar

  • Li, X. et al. Large-area two-dimensional layered hexagonal boron nitride grown on sapphire by metalorganic vapor phase epitaxy. Crystal Growth Des. 163409–3415 (2016).

    Article CAS Google Scholar

  • Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544340–343 (2017).

    Article CAS Google Scholar

  • Kim, H. et al. Impact of 2D–3D heterointerface on remote epitaxial interaction through graphene. ACS Nano 1510587–10596 (2021).

    Article CAS Google Scholar

  • Kim, H.-s et al. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting. Proc. Natl Acad. Sci. USA 10810072–10077 (2011).

    Article CAS Google Scholar

  • Kim, T.-i et al. High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates. small 81643–1649 (2012).

    Article CAS Google Scholar

  • LaValle, SM Virtual Reality (Cambridge Univ. Press, 2016).

  • Kum, H. et al. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nat. Electron. two439–450 (2019).

    Article CAS Google Scholar

  • Cheng, J.-H., Wu, YS, Peng, WC & Ouyang, H. Effects of laser sources on damage mechanisms and reverse-bias leakages of laser lift-off GaN-based LEDs. J. Electrochem. Soc. 156H640 (2009).

    Article CAS Google Scholar

  • Jiang, J. et al. Carrier lifetime enhancement in halide perovskite via remote epitaxy. Nat. Commun. 104145 (2019).

    Article Google Scholar

  • Journot, T. et al. Remote epitaxy using graphene enables growth of stress-free GaN. nanotechnology 30505603 (2019).

    Article CAS Google Scholar

  • Bae, S.-H. et al. Graphene-assisted spontaneous relaxation towards displacement-free heteroepitaxy. Nat. nanotechnology. 15272–276 (2020).

    Article CAS Google Scholar

  • Chang, H. et al. Graphene-driving strain engineering to enable strain-free epitaxy of AlN film for deep ultraviolet light-emitting diode. Light Sci. app. 1188 (2022).

    Article CAS Google Scholar

  • Chen, Z. et al. Improved epitaxy of AlN film for deep-ultraviolet light-emitting diodes enabled by graphene. Adv. Mater. 311807345 (2019).

    Article Google Scholar

  • Ryou, J. et al. Control of quantum-confined Stark effect in InGaN-based quantum wells. IEEE J. Sel. Top. Quantum Electron. 151080–91 (2009).

    Article CAS Google Scholar

  • Chen, J. & Packard, CE Controlled spalling-based mechanical substrate exfoliation for III-V solar cells: a review. Sun. Energy Mater. Sun. Cells 225111018 (2021).

    Article CAS Google Scholar

  • Zhang, B., Luo, C. & Li, Y.-F. Damage-free transfer of GaN-based light-emitting devices and reuse of sapphire substrate. ECS J. Solid State Sci. Technol. 9065019 (2020).

    Article CAS Google Scholar

  • Bauhuis, GJ et al. Wafer reuse for repeated growth of III–V solar cells. Program Photovolt. 18155–159 (2010).

    Article CAS Google Scholar

  • Kim, H. et al. Multiplication of freestanding semiconductor membranes from a single wafer by advanced remote epitaxy. Preprint at https://arxiv.org/abs/2204.08002 (2022).

  • Day, J. et al. III-nitride full-scale high-resolution microdisplays. app. Phys. Lett. 99031116 (2011).

    Article Google Scholar

  • Meng, W. et al. Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat. nanotechnology. 161231–1236 (2021).

    Article CAS Google Scholar

  • Ludovic, D. et al. Processing and characterization of high resolution GaN/InGaN LED arrays at 10 micron pitch for micro display applications. in Proc. SPIE 10104, Gallium Nitride Materials and Devices XII (eds Chyi, J.-I. et al.) 1010422 (SPIE, 2017).

  • Chen, G.-S., Wei, B.-Y., Lee, C.-T. & Lee, HY Monolithic red/green/blue micro-LEDs with HBR and DBR structures. IEEE Photonics Technol. Lett. 30262–265 (2018).

    Article CAS Google Scholar

  • Park, J. et al. Electrically driven mid-submicrometre pixelation of InGaN micro-light-emitting diode displays for augmented-reality glasses. Nat. Photon. 15449–455 (2021).

    Article CAS Google Scholar

  • Carlson A, Bowen AM, Huang Y, Nuzzo RG & Rogers JA Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 245284–5318 (2012).

    Article CAS Google Scholar

  • Forrest, SR, Bradley, DDC & Thompson, ME Measuring the efficiency of organic light-emitting devices. Adv. Mater. 151043–1048 (2003).

    Article CAS Google Scholar

  • Leave a Comment

    %d bloggers like this: